
Evaluation of the components of a distributed workload managers on new platforms
Rami Aboushadi – Jackson State University – MS – OMNI Internship FERMILAB-POSTER-22-185-STUDENT

Introductions: GlideinWMS

The purpose of the GlideinWMS is to provide a simple way to access the Grid resources.

GlideinWMS is a Glidein Based WMS (Workload Management System) that works on

top of HTCondor. Glideins are like placeholders, a mechanism by which one or more

remote resources temporarily join a local HTCondor pool. The HTCondor system is used

for scheduling and job control.

To evaluate the GlideinWMS and HEPCloud components on REHL8 I followed a series

of procedures:

- Setup of AlmaLinux 8 VMs with Python 3.9

- Running the continuous integration tests on RHEL8 with Python 3.9. And

troubleshooting and fixing some failing unit tests

- Installation, testing and adaptation of GlideinWMS Frontend and Factory on RHEL8

with Python 3.9

- Installation, testing and adaptation of Decision Engine on RHEL8 with Python 3.9

- Benchmarking of new Hyper-threaded worker nodes with different loads from a real

DUNE workflow

Figure 2: The main task of the VO Frontend is to look for user

jobs and ask the Glidein Factories to provide glideins, if

needed.

Source: https://glideinwms.fnal.gov/doc.prd/frontend/index.html

Figure4 : Results of pyunittest after

troubleshooting and debugging

with zero file error.

Figure 1: GlideinWMS Structures

Source: https://glideinwms.fnal.gov/doc.prd/frontend/index.html

Figure3 : Example of some

files that failed unit test.

Debugging and

troubleshooting

I learned ...

I've got more experienced ...

I was able to troubleshoot the unit tests and fix some problems with deprecated Python

constructs and with a different handling of multi processing. We decided to skip the test

of epoll and remove it from the possible alternatives to handle multi processing.

I was able to install all the systems on Alma Linux 8 (RHEL8 compatible) with Python

3.9: GlideinWMs Frontend, VO Pool, and Factory, and HEPCloud's Decision Engine

The DUNE workflow was able to scale on the Worker node using all cores

The GlideinWMS Factory and Frontend and

HEPCloud's Decision Engine are coded in

Python.

To run on well supported platforms and to take

advantage of new features, over time it is

necessary to support new platforms, new

Operating Systems and new Python versions.

Python 3.6 is the supported Python on EL7 and

was EOL in December 2021.

GlideinWMS and HEPCloud decided to move

to Python 3.9 and to EL8, which provides better

support for Python versions newer than 3.6.

Also Worker Nodes, the computers where the

scientific software is run, evolve over time and

it is useful to know the effectiveness of new

architectures in running scientific applications.

The goal of this project is to test different part

of the systems, adapt GlideinWMS and write

recommendations for the use of new platforms.

Methods:

Conclusions:

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science, Office of High Energy

